Датчик влажности почвы своими руками: сборка устройства и сфера использования

Датчик влажности почвы своими руками в домашних условиях

Не все владельцы садов и огородов имеют возможность каждый день ухаживать за своими посадками. Тем не менее без своевременного полива нельзя рассчитывать на хороший урожай.

Решением проблемы станет автоматическая система, позволяющая добиться того, чтобы грунт на вашем участке сохранял требуемую степень влажности на протяжении всего вашего отсутствия. Главной составляющей частью любого автополива является датчик влажности почвы.

Понятие датчика влажности

Датчик влажности ещё имеет другие названия. Его называют влагомером или сенсором влажности.

Как видно на фото датчиков влажности почвы, такое устройство представляет собой прибор, состоящий из двух проводов, подключённых к слабому источнику электроэнергии.

При росте влажности между электродами сила тока и сопротивление снижаются и наоборот, если воды в грунте становится недостаточно, данные показатели увеличиваются. Устройство включается простым нажатием кнопки.

Следует учитывать, что электроды будут находиться во влажной почве. Поэтому включение прибора рекомендуется осуществлять через ключ. Такой приём уменьшит отрицательное воздействие коррозии.

Как это работает?

Прямоугольные импульсы большой длительности (поз.1), проходя через делитель напряжения, образованного элементами C2, R2, R3, Rпочвы, R4, C3, превращаются в короткие импульсы (поз.2). Эти импульсы через конденсатор С4 поступают на вход элемента DD1.3. Туда же, через резистор R6, поступает некоторый уровень постоянного напряжения (поз.3) с делителя напряжения R5.

Когда общий уровень напряжения на входе DD1.3 (поз.4) достигает порога срабатывания компаратора (отмечено красной точкой), запускается одновибратор на DD1.3, DD1.4. Длительность управляющего импульса на выходе DD1.4 определяется постоянной времени R7, C5.

Вернуться наверх к меню.

Зачем необходим данный прибор

Влагомеры устанавливают не только на открытом грунте, но и в теплицах. Контроль времени полива – вот для чего используют датчики влажности почвы. Вам не понадобиться ничего делать, лишь включить устройство. После оно будет работать без вашего участия.

Однако огородникам и садоводам следует отслеживать состояние электродов, поскольку они могут подвергнуться коррозионному разрушению и в результате выйти из строя.

Виды датчиков влажности почвы

Рассмотрим, какие бывают датчики влажности почвы. Их принято делить на:

Емкостные. Их конструкция схожа с воздушным конденсатором. В основе работы лежит изменение диэлектрических свойств воздуха в зависимости от его влажности, которое вызывает увеличение или снижение ёмкости.

Резистивные. Принцип их действия заключается в изменении сопротивления гигроскопического материала в зависимости от того, сколько влаги в нём содержится.

Психометрические. Принцип работы и схема устройства таких датчиков будут посложнее. В основе лежит физическое свойство потери тепла при испарении. Прибор состоит из сухого и влажного детектора. По разнице температур между ними и судят о количестве водяных паров в воздухе.

Аспирационные. Данный вид во многом схож с предыдущим, отличие составляет вентилятор, который служит для нагнетания воздушной смеси. Аспирационные приборы определения влажности используют в местах со слабым или прерывистым движением воздуха.

Какой датчик влажности выбрать зависит от каждого конкретного случая. На выбор прибора влияют и особенности установленной у вас системы автоматического полива и ваши финансовые возможности.

Схемы

Найдено: 4,459 Вывод: 1-10

    Мощный понижающий DC-DC преобразователь 5 В/7 А с широким диапазоном входного напряжения

Схемы Питание Texas Instruments LM5116

Rajkumar Sharma electronics-lab.com В статье мы рассмотрим конструкцию модуля, представляющего собой мощный неизолированный понижающий DC-DC преобразователь с выходным напряжением 5 В и выходным током до 7 А (Рисунок 1). Основные отличительные …

50V to 5V/7A Synchronous Buck (Step-down) Converter

Rajkumar Sharma electronics-lab.com This module is a non-isolated 7 A DC-DC converter. The module can convert any DC voltage between 7 V to 50 V to a 5 V DC with load current up to 7 A (Figure 1). The project has been designed around LM5116 Wide …

Схемы Arduino ·

У каждого радиолюбителя, инженера, разработчика есть различного рода измерительные приборы. Это могут быть как сложные многофункциональные приборы промышленного изготовления, так и простые вольтметры, амперметры, измерители емкости аккумуляторов, …

Arduino based Milliohm Meter with LCD display

Emmanuel Odunlade electronics-lab.com One of the best things about being a maker is the ability to make your own tools. We have covered the development of several electronics tools in past, from voltmeters to battery testers. For today’s …

Схемы Генераторы Texas Instruments LM555

Журнал РАДИОЛОЦМАН, январь 2020 Davinder Oberoi EDN Автоколебательный мультивибратор является популярным источником прямоугольных импульсов, полезным для многих приложений, таких как схемы синхронизации и звуковые извещатели. Один из наиболее …

Generator has independent pulse width, frequency

Davinder Oberoi EDN A common circuit in electronics is the square-wave, astable multivibrator (one-shot), which is useful for various purposes, such as timing circuits and audible alarms. The most common way to generate the desired square wave is …

Схемы Измерения ·

Питание Analog Devices AD8603

Журнал РАДИОЛОЦМАН, январь 2020 Marián Štofka EDN Схема на Рисунке 1 является альтернативой монитору токового шунта, описанному в предыдущей статье [ 1 ]. В той схеме использовалась микросхема AD8212 компании Analog Devices с внешним …

High-side current-shunt monitor offers reduced error

Marián Štofka EDN The circuit in Figure 1 is an alternative to a high-side current monitor in a recent Design Idea (Reference 1). That monitor uses the Analog Devices AD8212 and an external high-voltage bipolar PNP transistor. The …

Схемы Интерфейсы Broadcom HCPL-181

Журнал РАДИОЛОЦМАН, январь 2020 Михаил Шустов, г. Томск Предложены варианты схем реализации оптоэлектронных реверсивных каналов передачи цифровой и аналоговой информации Реверсивные каналы передачи данных позволяют производить передачу аналоговой …

Схемы Цифровые ON Semiconductor NL27WZ14

Журнал РАДИОЛОЦМАН, январь 2020 Shyam Tiwari EDN При необходимости создания компактной телеметрической системы возникает проблема разработки небольшого легкого устройства с минимальным числом компонентов. Сопряжение с последовательными данными из …

Circuit makes simple FSK modulator

by Shyam Tiwari EDN The need for a compact telemetry system poses a challenge for designing a small, light, low-component-count system. Interfacing serial data from the microprocessor is also difficult because most low-cost RF transmitters do not …

Схемы Arduino ·

Измерения
·
Начинающим
·
Применение микроконтроллеров

Mirko Pavleski Arduino.cc Простой в сборке, но высокочувствительный, детектор электромагнитного поля на Arduino Это простое устройство способно обнаруживать даже очень слабые электромагнитные поля. Относительная напряженность поля отображается в …

DIY Ultra Sensitive EMF Detector

Mirko Pavleski Arduino.cc A simple to build, but very sensitive electromagnetic field detector. This is a simple device capable of detecting very weak electromagnetic fields (Figure 1). The relative field intensity is displayed on the LCD display …

Схемы Аналоговая схемотехника ·

Измерения Analog Devices AD8212

Журнал РАДИОЛОЦМАН, январь 2020 Chau Tran и Paul Mullins, Analog Devices EDN Иногда бывает необходимо измерить токи нагрузки до 5 А при наличии синфазного напряжения, достигающего 500 В. Для этого можно воспользоваться высоковольтным монитором …

Current monitor compensates for errors

Chau Tran and Paul Mullins, Analog Devices EDN You sometimes need to measure load currents as large as 5 A in the presence of a common-mode voltage as high as 500 V. To do so, you can use Analog Devices’ AD8212 high-voltage current-shunt …

Схемы Силовая электроника ON Semiconductor STK984-090A

Rajkumar Sharma Electronics-lab.com Проект, рассмотренный в статье, выполнен на микросхеме STK984-090A компании ON Semiconductor, которая представляет собой интегральный инвертор с номинальным током 20 А и напряжением питания до 40 В (Рисунок 1). …

20A/40V Integrated Power Module for DC Brushless Motors (BLDC)

Rajkumar Sharma Electronics-lab.com This project is based on STK984-090A from ON Semiconductor which is a fully-integrated inverter with current rating 20 A and supply voltage 40 V DC (Figure 1). It has been designed to drive the Brushless DC …

Схемы Arduino ·

Измерения
·
Медицина
·
Применение микроконтроллеров ATtiny85 SSD1306 MAX30102

Jeff Magee create.arduino.cc Примечание: прибор не предназначен для использования в медицинских целях. Устройство позволяет измерять частоту пульса, уровень кислорода в крови и динамический график сердечного ритма фотоплетизмограмму. …

ATtiny85 Pulse Oximeter and Photoplethysmograph

Jeff Magee It is emphasised that this should not be used for medical purposes. Displays your pulse rate, blood oxygen level and a moving graph of each heart beat, the photoplethysmogram (PPG). About this project This project implemented on an …

Детектор сухой (влажной) почвы

Данное устройство можно использовать для автоматического полива в теплицах, цветочных оранжереях, клумбах и комнатных растениях. Ниже представлена схема, по который можно изготовить простейший датчик (детектор) влажности (или сухости) почвы своими руками.

Схема датчика влажности почвы

Когда светодиод LED1 светится – земля сухая, при поливе светодиод гаснет.
Датчик (E1) сделан из двух железных пластин расположенных друг от друга на расстоянии пяти миллиметров
Транзисторы VT1, VT2 – КТ315.
R3 – три резистора по 91 Ом.
Микросхема DD1 – К155ЛА3
Исполнительное устройство: реле с потреблением катушки не более 90 ма
VR1 – кренка на 5 вольт.
Схема проверена мною. Если все детали исправны и все правильно собрано – работать будет сразу.

Фото устройства на макетной плате

Список радиоэлементов

Барабанщиков Олег Опубликована: 2011 г. 0 1

Вознаградить Я собрал 0 0

Оценить статью

  • Техническая грамотность

Средний балл статьи: 0 Проголосовало: 0 чел.

Комментарии (27) | Я собрал ( 0 ) | Подписаться

Для добавления Вашей сборки необходима регистрация

0

Интересная схемка. Единственное, что мне не нравится это то, что датчик питается постоянным током. В микросхеме 4 элемента, можно сделать на двух – генератор и через датчик пустить импульсы.

0

Спасибо автору, схема простая, но эффективная,можно много где использовать. Собрал – работает отлично.

0

Прикольная, штука, а главное простая. Можно забабахать автоматику полива. Сделать небольшой электромагнитный клапан, открывающий трубку, идущую с резервуара.

0

0

У меня несколько вопросов по схеме:
1) Под исполнительным устройством подразумевается насос?
2) 6-12 В на мост, это входное напряжение получается, так? Тут блок питания потребуется, значит подключение к сети одно есть. А разве само исполнительное устройство от сети запитываться не будет? Просто тут 2 пары входов и как то трудно понять, что как?

0

Ни в коем случае. В качестве исполнительного устройства подразумевается электолмагнитное реле (прямое, промежуточное)

0

У меня есть план сделать автоматический полив домашних растений. Папа заказал мне из Китая водяную помпу (12v, 4,2 w), как рабочий агрегат для распределения воды при поливе. и блок питания на 220/12 V. Мне надо сделать всё остальное.
Выбрал Вашу схему и хочу её приспособить к делу.
Но, есть вопросы: Нагрузка по схеме, на исполнительный механизм 90ма, а на помпе получится потребление 350ма. (Реле не хочу использовать- папа говорит, что они всегда выходят из строя в неподходящий момент, а мне надо надёжную схему.)
Как сделать эту схему с большей подключаемой нагрузкой без реле? (ну может с оптореле?)
И можно ли заменить железные пластины (каков их размер?) на алюминиевые? (они более долговечны)

Читайте также:  Теплица из дерева своими руками: выбор материала и процесс постройки

0

Чтобы получить на выходе 350-400 mA транзистор VT2 нужно заменить на КТ815 или КТ817, но его придется установить на небольшой радиатор, замена пластин на алюминиевые вполне возможно, так как датчик реагирует на изменение сопротивления между ними где самим “сопротивлением” является смесь воды и почвы, а пластины являются лишь контактами этого “сопротивления”. Коллектор транзистора VT2 соединить с +12 вольт, эмиттер с положительной клеммой помпы, а отрицательную клемму помпы соединить с землей блока питания.

0

Пластины из нержавейки делайте. Аллюминий окисляется не хуже железа, тем более при наличии (какого-никакого),но напряжения.

0

Mytsa Zabar благодарю Вас за информацию. Отлично. Ещё у меня вопросы:
Если блок питания на 12вольт уже даёт постоянный ток, то выпрямитель в схеме не нужен? Или имеется ввиду, что некоторые блоки питания китайского производства плохо выпрямляют ток? Типа халтура.
Когда прибор в ожидании полива сколько он будет потреблять току? И можно ли сделать такую схему, чтобы он не потреблял в это время ток?
И ещё вопрос, можно сделать надёжную схему питания в 12 вольт от переменного тока 220 вольт самостоятельно без трансформатора?

0

Илья, отвечу на вопросы по порядку:
1. Если блок питания выдает постоянный ток то здесь выпрямитель не нужен, просто надо сразу подсоединить стабилизатор напряжения 7805 для запитки схемы, и к этому же плюсу питания коллектор транзистора VT2
2. Лучше выбрать хороший трансформаторный блок питания, а не какой-нибудь китайский, так надежнее.
3. Сколько будет потреблять тока, ну ХЗ его знает, чтобы не потреблял ток, так не получится сенсорная схема должна чем-то запитываться что-бы система полива работала.
4. Без трансформаторный блок питания я не советую делать, и вот причины – главная из них, это отсутствие развязки с сетью, то есть минус питания будет напрямую соединено с сетью, это чревато травмами как Вас так и ваших близких, особенно если кто-то полезет рукой проверить влажность земли. Тоже самое касается и импульсных источников питания, минус питания тоже не совсем развязан с сетью.Еще раз повторю ОПАСНО ДЛЯ ЖИЗНИ, НЕ ИСПОЛЬЗОВАТЬ БЕЗ ТРАНСФОРМАТОРНЫЕ И ИМПУЛЬСНЫЕ ИСТОЧНИКИ ПИТАНИЯ.
5. От себя скажу: возьми хороший трансформатор на 12 вольт, сделай простенький выпрямитель из диодов 1N4007 и емкость на 1000 мкф. Будет надежнее.

0

Mytsa Zabar, ага, понял! Хороший совет, спасибо, учту. Блок питания уже заказал в Китае мой брат. придёт, будем с папой смотреть -“хорош” он или нет.
Про трансформатор – типа “самодельный” блок питания, я ещё не думал. Мало что умею, а кружка радиолюбителей у нас в городе фактически нет!
Надо будет как нибудь собрать такой. Куда там конденсатор прилаживать? и на сколько вольт он должен быть если, к примеру трансформатор может на выходе дать 12 вольт, 1 ампер?

0

Илья, если трансформатор на выходе может дать 12 вольт, то надо поставить конденсатор напряжением на 16 вольт,
емкость конденсатора зависит от тока, который отдается в нагрузку блоком питания, то есть на 1 ампер ставится конденсатор в 1000 мкф. К примеру Ваш трансформатор дает напряжение 12 вольт и ток 2 ампера, значит надо поставить конденсатор на 16 Вольт 2200 мкф.
Чтобы подробнее понять как работает трансформатор и не только, я бы посоветовал Вам прочитать книжку Борисов В. Г. “Кружок радиотехнического конструирования”. Хорошая книга, кружка радиолюбителей она не заменит, но многое сможешь из нее понять + там есть простенькие схемы которые можно собрать из старых радиодеталей.

0

Схема хорошая, хочу использовать для полива теплицы, но есть один вопрос для каждого вида растений нужна своя влажность почвы, каким резистором можно регулировать порог срабатывания.

0

Я не автор схемы. Но т.к. с электродов сигнал идет напрямую на логический элемент DD1.1 – он отвечает за распознавание сухой почвы. И рядом лишь один резистор – шунт на землю в виде R3 – он должен отвечать за чувствительность схемы.
Кстати схема действительно будет удобна как сама по себе, так и для Arduino через гальваническую развязку (в виде дискретного сигнала)

0

Народ, отпишитесь плз кто собирал сие чудо, спаял все по схеме не работает, при подаче 12в без датчика влажности как я понял должен загореться светодиод, но этого не происходит, загорается он только если пальцами по микрухе поелозить или коротнуть 2-3 выводы. все элементы рабочие.

0

Собрал, все работает в норме. Светодиод горит в режиме ожидания. Как только замыкается “датчик влажности” он гаснет. Может выводы у микрухе перепутаны, или замыкание на дорожках?

0

В причине разобрался, не подал питание на 7 и 14 микрухи, а вот исполнительное реле через вт2 так и не работает.

0

0

0

была в наличии к561ла7, задействовал 3 логических элемента, чтобы уменьшить частичное срабатывание, Заменил R3 на подстроечный 10к. Планирую использовать в паре с МК, подавая питание импульсами на короткое время

0

Минус в том,что контакты в земле довольно быстро окисляются и сгнивают и работать данная схема перестаёт.

0

А вы лудить не пробовали? Или нержавейку? У меня другой вопрос, почему на фото 6 резисторов, а в схеме только 4?

0

0

Не работает. Вместо К155ЛА3 использовал SN74HC00N. Питание 5 вольт есть, и на логику и на микрушку. Номиналы резисторов точно такие же, 0,125 вт. Вместо 273 ома ставил подстроечник на 6кОм. Нет эффекта. Смысл такой. Если датчик замыкать меж собой перемычкой, светодиод гаснет. Если опускать в воду или во влажную почву – горит. Использовал гетинаксовые пластинки и гвоздики. Не могу понять в чем может быть причина

0

Сделал по схеме, все заработало сразу, единственное, что тут смущает – через резистор R3 и датчик постоянно течет немаленький ток, резистору-то пофиг, а датчик будет корродировать, полагаю. Для пробы поставил 2kOm, вроде так тоже работает, может и больше можно, поработает с недельку-другую, посмотрим. Да, исполнительным устройством у меня напрямую мотор стоит (3-вольтовая китайская помпа), ток потребления 30 мА, транзистор естественно подстрахован диодом.

Датчик влажности почвы: принцип работы и сборка своими руками

Автоматика заметно упрощает жизнь владельца теплицы или приусадебного участка. Автоматическая система полива избавит от однообразной повторяющейся работы, а избежать избытка воды поможет датчик влажности почвы – своими руками такой прибор собрать не так уж сложно. На помощь садоводу приходят законы физики: влага в грунте становится проводником электрических импульсов, и чем ее больше, тем ниже сопротивление. При понижении влажности сопротивление увеличивается, и это помогает отследить оптимальное время полива.

Конструкция и принцип работы датчика влажности

Конструкция и принцип работы датчика влажности

Конструкция датчика влажности почвы представляет собой два проводника, которые подключаются к слабому источнику энергии, в схеме должен присутствовать резистор. Как только количество влаги в пространстве между электродами растет, сопротивление снижается, и сила тока увеличивается.

Влага высыхает – сопротивление растет, сила тока снижается.

Поскольку электроды будут находиться во влажной среде, их рекомендуется включать через ключ, чтобы уменьшить разрушительное влияние коррозии. В обычное время система стоит выключенной и запускается только для проверки влажности нажатием кнопки.

Датчики влажности почвы такого типа можно устанавливать в теплицах – они обеспечивают контроль за автоматическим поливом, поэтому система может функционировать вообще без участия человека. В этом случае система постоянно будет находиться в рабочем состоянии, но состояние электродов придется контролировать, чтобы они не пришли в негодность под воздействием коррозии. Аналогичные устройства можно устанавливать на грядках и газонах на открытом воздухе – они позволят мгновенно получить нужную информацию.

При этом система оказывается намного точнее простого тактильного ощущения. Если человек будет считать землю полностью сухой, датчик покажет до 100 единиц влажности грунта (при оценке в десятеричной системе), сразу после полива это значение вырастает до 600-700 единиц.

После этого датчик позволит контролировать изменение содержания влажности в грунте.

Если датчик предполагается использовать на улице, его верхнюю часть желательно тщательно загерметизировать, чтобы не допустить искажения информации. Для этого ее можно покрыть водонепроницаемой эпоксидной смолой.

Сборка датчика влажности своими руками

Сборка датчика влажности своими руками

Конструкция датчика собирается следующим образом:

  • Основная часть – два электрода, диаметр которых составляет 3-4 мм, они прикрепляются к основанию, изготовленному из текстолита или другого материала, защищенного от коррозии.
  • На одном конце электродов нужно нарезать резьбу, с другой стороны они делаются заостренными для более удобного погружения в грунт.
  • В пластине из текстолита просверливаются отверстия, в которые вкручиваются электроды, их нужно закрепить гайками с шайбами.
  • Под шайбы нужно завести исходящие провода, после чего электроды изолируются. Длина электродов, которые будут погружаться в грунт, составляет около 4-10 см. в зависимости от используемой емкости или открытой грядки.
  • Для работы датчика потребуется источник тока силой 35 мА, система требует напряжения 5В. В зависимости от количества влаги в почве диапазон возвращаемого сигнала составит 0—4,2 В. Потери на сопротивление продемонстрируют количество воды в грунте.
  • Подключение датчика влажности почвы проводится через 3 провода к микропроцессору, для этой цели можно приобрести, например, Arduino. Контроллер позволит соединить систему с зуммером для подачи звукового сигнала при чрезмерном уменьшении влажности почвы, или к светодиоду, яркость освещения будет меняться при изменениях в работе датчика.

Такое самодельное устройство может стать частью автополива в системе “Умный дом”, например, с использованием Ethernet-контроллера MegD-328. Web-интерфейс показывает уровень влажности в 10-битной системе: диапазон от 0 до 300 говорит о том, что земля совершенно сухая, 300-700 – в почве достаточно влаги, более 700 – земля мокрая, и полив не требуется.

Конструкция, состоящая из контроллера, реле и элемента питания убирается в любой подходящий корпус, для которого можно приспособить любую пластиковую коробочку.

В домашних условиях использование такого датчика влажности будет очень простым и вместе с тем надежным.

Читайте также:  Поделки из пластиковых бутылок своими руками

Сферы использования датчика влажности

Сферы использования датчика влажности

Применение датчика влажности грунта может быть самым разнообразным. Наиболее часто они используются в системах автополива и ручного полива растений:

  1. Их можно установить в цветочных горшках, если растения чувствительны к уровню воды в грунте. Если речь идет о суккулентах, например, о кактусах, необходимо вбирать длинные электроды, которые будут реагировать на изменение уровня влажности непосредственно у корней. Их также можно использовать для фиалок и других растений с хрупкой корневой системой. Подключение к светодиоду позволит точно определить, когда пора проводить полив.
  2. Они незаменимы для организации полива растений в теплице. По аналогичному принципу также собираются датчики влажности воздуха, которые нужны для запуска в работу системы опрыскивания растений. Все это позволит автоматическим образом обеспечить полив растений и нормальный уровень атмосферной влажности.
  3. На даче использование датчиков позволит не держать в памяти время полива каждой грядки, электротехника сама расскажет о количестве воды в грунте. Это позволит не допустить избыточного полива, если недавно прошел дождь.
  4. Применение датчиков очень удобно и в некоторых других случаях. К примеру, они позволят контролировать влажность грунта в подвале и под домом вблизи фундамента. В квартире его можно установить под мойкой: если труба начнет капать, об этом тут же сообщит автоматика, и можно будет избежать затопления соседей и последующего ремонта.
  5. Простое устройство датчика позволит всего за несколько дней полностью оборудовать системой оповещения все проблемные участки дома и сада. Если электроды достаточно длинные, с их помощью можно будет контролировать уровень воды, к примеру, в искусственном небольшом водоеме.

Самостоятельное изготовление датчика поможет оборудовать дом автоматической системой контроля с минимальными затратами.

Комплектующие фабричного производства легко приобрести через интернет или в специализированном магазине, большую часть устройств можно собрать из материалов, которые всегда найдутся в доме любителя электротехники.

Больше информации можно узнать из видео.

Надежный емкостной датчик влажности почвы своими руками (STM32)

Рассмотрена теория построения емкостного датчика для системы автополива , расчеты, проверка на практике, примеры применения.

Если взять два куска фольгированного стеклотекстолита и расположить их параллельно медными плоскостями внутрь на небольшом расстоянии, то получим плоский конденсатор. Рассмотрим как будет влиять изменение его емкости и как это можно использовать.

Купить на Aliexpress

Расчеты

Емкость вычисляется по следующему выражению:

Пусть пластины имеют размеры w = 12 мм; l = 35 мм, тогда площадь S = 12*35=420 мм², а расстояние между ними d = 3 мм, тогда расчетная электрическая емкость C = 1 пФ.

Геометрические размеры (площадь) S, как и расстояние между пластинами d не меняется. Остается для изменения емкости менять вещество между пластинами, пока это воздух ε = 1. Как думаете какая относительная диэлектрическая проницаемость воды ? Источники показывают, что ε = 81.

Полное погружение в воду даст увеличение емкости в 81 раз! Расчетная ёмкость C составит уже не 1 пФ, а 100 пФ.

Таким образом плавно погружая этот самодельный кондер также плавно и пропорционально будет изменятся и емкость, что дает возможность эффективно отслеживать состояние влажности.

Превращение изменения емкости в изменение напряжения

Подключив последовательно с резистором конденсатор получим ФНЧ (фильтр нижних частот).

Получается делитель напряжения, где у верхнего плеча R1 сопротивление не изменяется, а емкостное сопротивление нижнего плеча C1 меняется в зависимости от частоты.

Но так как частота сигнала будет неизменной, то построим график зависимости емкостного сопротивления от емкости (C = 1-100 пФ):

Таким образом понятно, что при увеличении емкости ( погружение в воду ) сопротивление нижнего плеча будет уменьшаться, как и падение напряжения на нем, а значит и выходное напряжение (см. подтверждение опытом ниже).

Но остается еще одно – выделить только амплитуду, именно для этого применяется АМ-детектор. Его расчет был выполнен, но ничего полезного этого не дало, поэтому номиналы взяты такие же, как у готового. Главная суть в этом:

нужно подобрать емкость и сопротивление таким образом, чтобы конденсатор успевал подзаряжаться при увеличении сигнала, а при уменьшении подразряжался за время низкого уровня, но при изменении сигнала огибающая изменялась.

Схема электрическая принципиальная

Моделирование работы работы схемы

Собираем (номиналы изменены из-за сложности моделирования на высоких частотах!).

Здесь видно как хорошо выделяется амплитуда при изменении емкости C2.

Проверка на практике

Сначала непосредственно датчик, состоящий из двух кусочков фольгированного стеклотекстолита FR-4 (70×12 мм).

*также не забываем изолировать открытые участки меди клейкой лентой

И также схемка в миниатюрном исполнении.

Сигнал сгенерирован с помощью МК (ШИМ, f = 1 МГц, D = 50%), конечно это можно сделать с помощью того же таймера NE555, но если устройство уже будет иметь микроконтроллер, то зачем же еще одна МС?

Теперь просто подключаем питание (здесь 3.3 В), вольтметр на выход и смотрим как изменяется напряжение при заливании водой.

Очень хорошо, показания изменяются очень плавно и четко.

Остается только оцифровать показания с помощью встроенного в МК АЦП и придать им какие-то смысловые привязки, например проценты.

Проверка на почве

Также не лишним будет воткнуть данный датчик в настоящий грунт.

Показания менялись медленно и уверенно, на следующий день на выходе имеем плюс 214 мВ, т.к. слой почвы мал.

Более практичный датчик из пластин оцинковки

Покрыты слоем клейкой ленты.

При сухом грунте на выходе примерно 1.5 В.

После сверхобильного полива 0.75 В.

Подключение к микроконтроллеру

Остается вместо вольтметра подключить один из входов АЦП МК и настроить генерацию ШИМ-сигнала одним из таймеров. Чтобы не повторять одно и то же см. видос или код на гитхабе.

Выполняем калибровку

Отсутствие воды: U = 0.75 В = ADC = 930 = 0 %.
Заполнение полностью (до определяемой границы): U = 1.4 В = ADC = 1737 = 100 %.

Автоматическая система полива (простейшее исполнение)

Прикупил маленький водяной насос, работает неплохо и хорошо подойдет для проверки.

Управление насосом через ключ (полевой транзистор IRLML2502) ШИМ-сигналом 1 кГц.

После выполненой калибровки программа выключит насос, когда напряжение станет ниже нижнего порога (0.75В) и включит, когда пересечет верхний порог (1.4 В).

Направления применения

Влажность почвы

Самым очевидным применением будет определение влажности грунта в цветочном горшке или просто на участке.

Таким образом можно встроить этот датчик в систему автоматического полива растений.

Наличие дождя

Для определения дождя также можно использовать сенсор такого типа, просто между пластинами расположить губку, а сбор капель сделать с помощью воронки.

Таким образом во время дождя поролон впитывает воду, емкость возрастает, а после прекращения дождя остатки уйдут вниз, и еще через время она снова станет сухой.

Уровень воды в емкости

Имея небольшой (или большой) запас воды в цистерне удобно проверять её уровень на расстоянии, ведь обычно емкость находится где-то в труднодоступном месте на высоте.

Если емкость металлическая, то она может выступать одним электродом. Если пластиковая, то его придется сделать, но это не так сложно.

Прикасание к телу

В одном из устройств принцип изложенный выше был использован для обнаружения касания к телу человека, пример ниже.

*это электронный термометр; смотреть в правый верхний угол

То же самое от китайцев

Вообщем то эта схема является частью китайского сенсора. Единственное отличие в том, что генератором выступает не таймер NE555, а микроконтроллер, ведь в любом случае он будет в устройстве.

Видос

Скачать

Итого

Преимуществом емкостного датчика перед просто двумя голыми электродами является отсутствие электрохимической реакции (электролиза), при котором на контактах будут восстанавливатся вещества (из раствора) и портить почву, а кроме этого они будут сами коррозировать. Конечно можно этот процесс очень значительно замедлить (опрашивать датчик редко), но все же.

Медные площадки защищены маской, но будет ли она достаточно устойчива в суровых условиях? Рассматривается возможность дополнительного покрытия слоем лака/краски.

Изготовление емкостного датчика легко осуществляется при использовании технологий изготовления печатных плат, особенно это хорошо, когда остальные компоненты располагаются там же. Если же он должен быть велик, то здесь используем металлический лом.

Так как получаемые показания зависят от параметров датчика, то он требует калибровки.

Как работает датчик влажности почвы, и его взаимодействие с Arduino

Когда вы слышите термин «умный сад», вам приходит в голову система, которая измеряет влажность почвы и автоматически поливает ваши растения.

С этим типом системы вы можете поливать растения только при необходимости и избегать чрезмерного или недостаточного полива.

Если вы хотите построить такую систему, вам обязательно понадобится датчик влажности почвы.

Как работает датчик влажности почвы, и его взаимодействие с Arduino

Как работает датчик влажности почвы, и его взаимодействие с Arduino

Как работает датчик влажности почвы?

Работа датчика влажности почвы довольно проста.

Вилка в форме зонда с двумя открытыми проводниками действует как переменный резистор (потенциометр), сопротивление которого изменяется в зависимости от содержания воды в почве.

Рисунок 1 – Работа датчика влажности почвы

Это сопротивление обратно пропорционально влажности почвы:

  • большее количество воды в почве означает лучшую проводимость и приводит к снижению сопротивления;
  • меньшее количество воды в почве означает худшую проводимость и приводит к повышению сопротивления.

Датчик выдает выходное напряжение в соответствии с сопротивлением, измеряя которое мы можем определить уровень влажности.

Обзор аппаратного обеспечения

Типовой датчик влажности почвы состоит из двух компонентов.

Датчик содержит вилочный зонд с двумя открытыми проводниками, который погружается в почву или в любое другое место, где должно измеряться содержание воды.

Как сказано выше, он действует как переменный резистор, сопротивление которого изменяется в зависимости от влажности почвы.

Рисунок 2 Зонд датчика влажности почвы

Рисунок 2 – Зонд датчика влажности почвы

Модуль

Датчик также содержит электронный модуль, который соединяет датчик с Arduino.

В соответствии с сопротивлением датчика модуль выдает выходное напряжение, которое доступно на выводе аналогового выхода (AO).

Этот же сигнал подается на высокоточный компаратор LM393 для его оцифровки, с выхода которого сигнал подается на вывод цифрового выхода (DO).

Рисунок 3 Регулировка чувствительности датчика влажности почвы

Рисунок 3 – Регулировка чувствительности датчика влажности почвы

Для регулировки чувствительности цифрового выхода (DO) модуль содержит встроенный потенциометр.

Читайте также:  Простой мангал из кирпича: как построить своими руками

С помощью этого потенциометра вы можете установить пороговое значение; таким образом, когда уровень влажности превысит пороговое значение, модуль выдаст низкий логический уровень, в остальных случаях на цифровой выход будет подаваться высокий логический уровень.

Эта настройка очень полезна, когда вы хотите инициировать действие при достижении определенного порога. Например, когда уровень влажности в почве пересекает пороговое значение, вы можете активировать реле, чтобы начать перекачивание воды. Вот вам идея!

Совет: поверните движок потенциометра по часовой стрелке, чтобы увеличить чувствительность, или против часовой стрелки, чтобы уменьшить ее.

Рисунок 4 Светодиодные индикаторы питания и состояния почвы

Рисунок 4 – Светодиодные индикаторы питания и состояния почвы

Помимо этого, модуль имеет два светодиода. Индикатор питания загорится, когда на модуль будет подано напряжение питания. Светодиод состояния загорится, когда на цифровой выход будет подаваться низкий логический уровень.

Распиновка датчика влажности почвы

Датчик влажности почвы очень прост в использовании и содержит только 4 вывода для связи с внешним миром.

Рисунок 5 Распиновка датчика влажности почвы

Рисунок 5 – Распиновка датчика влажности почвы

AO (аналоговый выход) выдает аналоговый сигнал с напряжением в диапазоне между напряжением питания и 0 В и будет подключен к одному из аналоговых входов нашей платы Arduino.

Вывод DO (цифровой выход) выдает цифровой выходной сигнал со схемы встроенного компаратора. Вы можете подключить его к любому цифровому выводу на Arduino или напрямую к 5-вольтовому реле или подобному устройству.

Вывод VCC подает питание на датчик. Рекомендуется питать датчик напряжением от 3,3 до 5 В. Обратите внимание, что сигнал на аналоговом выходе будет зависеть от того, какое напряжение питания подается на датчик.

GND для подключения земли.

Измерение влажности почвы с помощью аналогового выхода

Поскольку модуль предоставляет как аналоговый, так и цифровой выходные сигналы, то для нашего первого эксперимента мы будем измерять влажность почвы, считывая аналоговые показания.

Подключение

Давайте подключим наш датчик влажности почвы к плате Arduino.

Сначала вам нужно подать питание на датчик. Для этого вы можете подключить вывод VCC на модуле к выводу 5V на Arduino.

Однако одной из широко известных проблем с этими датчиками является их короткий срок службы при воздействии влажной среды. При постоянной подаче питания на зонд скорость коррозии значительно увеличивается.

Чтобы преодолеть эту проблему, мы рекомендуем не подавать питание на датчик постоянно, а включать его только тогда, когда вы снимаете показания.

Самый простой способ сделать это – подключить вывод VCC к цифровому выводу Arduino и устанавливать на нем высокий или низкий логический уровень, когда это необходимо.

Кроме того, итоговая мощность, потребляемая модулем (оба светодиода горят), составляет около 8 мА, поэтому можно запитать модуль от цифрового вывода на Arduino.

Итак, давайте подключим вывод VCC модуля к цифровому выводу 7 Arduino, а вывод GND модуля к выводу GND Arduino.

И, наконец, подключите вывод AO модуля к выводу A0 аналого-цифрового преобразователя Arduino.

Схема соединений показана на рисунке ниже.

Рисунок 6 Подключение датчика влажности почвы к Arduino для считывания показаний на аналоговом выходе

Рисунок 6 – Подключение датчика влажности почвы к Arduino для считывания показаний на аналоговом выходе

Калибровка

Чтобы получить точные показания с датчика влажности почвы, рекомендуется сначала откалибровать его для конкретного типа почвы, которую вы планируете контролировать.

Различные типы почвы могут по-разному влиять на показания датчика, поэтому ваш датчик в зависимости от типа используемой почвы может быть более или менее чувствительным.

Прежде чем вы начнете хранить данные или запускать события, вы должны увидеть, какие показания вы на самом деле получаете от вашего датчика.

Чтобы отметить, какие значения выводит ваш датчик, когда почва максимально сухая, и когда она полностью насыщена влагой, воспользуйтесь скетчем, приведенным ниже.

Когда вы запустите этот скетч, вы увидите похожие значения в мониторе последовательного порта:

Этот тест может потребовать несколько проб и ошибок. Как только вы получите хороший контроль над этими показаниями, вы сможете использовать их в качестве пороговых значений, если намерены инициировать какое-либо действие.

Финальная сборка

Основываясь на значениях калибровки, программа, приведенная ниже, задает следующие диапазоны для определения состояния почвы:

  • 500-750 – это целевой диапазон;
  • >750 – достаточно сухая для полива.

Если все в порядке, вы должны увидеть вывод в мониторе последовательного порта, похожий на приведенный ниже.

Рисунок 8 Вывод аналоговых показаний датчика влажности почвы

Рисунок 8 – Вывод аналоговых показаний датчика влажности почвы

Измерение влажности почвы с помощью цифрового выхода

Для нашего второго эксперимента мы определим состояние почвы с помощью цифрового выхода.

Подключение

Мы будем использовать схему из предыдущего примера. На этот раз нам просто нужно удалить подключение к выводу аналого-цифрового преобразователя и подключить вывод DO модуля к цифровому выводу 8 Arduino.

Соберите схему, как показано ниже:

Рисунок 9 Подключение датчика влажности почвы к Arduino для считывания показаний на цифровом выходе

Рисунок 9 – Подключение датчика влажности почвы к Arduino для считывания показаний на цифровом выходе

Калибровка

Для калибровки цифрового выхода (DO) модуль имеет встроенный потенциометр.

Вращая движок этого потенциометра, вы можете установить пороговое значение. Таким образом, когда уровень влажности превысит пороговое значение, светодиод состояния загорится, и модуль выдаст низкий логический уровень.

Рисунок 10 Состояния цифрового выхода датчика влажности почвы

Рисунок 10 – Состояния цифрового выхода датчика влажности почвы

Теперь, чтобы откалибровать датчик, вставьте зонд в почву, когда ваше растение будет готово к поливу, и подстройте потенциометр по часовой стрелке так, чтобы светодиод состояния горел, а затем подстройте потенциометр обратно против часовой стрелки, пока светодиод не погаснет.

Теперь ваш датчик откалиброван и готов к использованию.

Код Arduino

После того, как схема будет собрана, загрузите в Arduino следующий скетч.

Если все в порядке, вы должны увидеть вывод в мониторе последовательного порта, похожий на приведенный ниже.

Рисунок 11 Вывод цифровых показаний датчика влажности почвы

Рисунок 11 – Вывод цифровых показаний датчика влажности почвы

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.

Датчик влажности почвы (резистивный): инструкция по использованию и примеры

Используйте резистивный сенсор влажности почвы для создания систем автоматического полива растений. Датчик подойдёт для ухода за комнатными цветками и флоре на огороде. Не дайте своим растениям засохнуть!

Принцип работы

Датчик для измерения влажности почвы выполнен в виде вилки с двумя электродами, которыми погружается в грунт на расстояние до 40 мм. При подключении питания на электродах создаёться напряжение. Если почва сухая, её сопротивление велико и через датчик между электродами течёт слабый ток. Если земля влажная — её сопротивление становится меньше, а ток датчика между электродами соответственно увеличивается. По итоговому аналоговому сигналу можно судить о степени увлажнения почвы.

Максимальное напряжение на выходе S не превышает 75% от напряжения питания модуля V , т.е. сигнальный диапазон датчика равен:

На показания датчика также влияют следующие факторы:

Электроды датчика покрыты золотом, чтобы предотвратить пассивную коррозию, когда он выключен. Избавиться от электролитической коррозии, вызванной протекающим током, невозможно, поэтому сенсор резистивного типа рекомендуется запитывать через силовой ключ. То есть, включать его только на время измерений, чтобы максимально продлить ресурс. В плане эксплуатации это доставляет неудобство, поэтому рекомендуем обратить внимания на ёмкостный датчик влажности почвы, который в силу своего исполнения неподвержен корозии.

Пример работы для Arduino и XOD

В качестве мозга для считывания показаний с датчика рассмотрим платформу из серии Arduino, например Arduino Uno.

Схема устройства

Подключите датчик влажности почвы к аналоговому пину A0 платформы Arduino. Для коммуникации понадобятся соединительные провода «мама-папа».

Для быстрой сборки и отладки устройства возьмите плату расширения Troyka Shield, которая одевается сверху на Arduino Uno методом бутерброда. Для коммуникации используйте трёхпроводной шлейф «мама-мама», который идёт в комплекте с датчиком.

Код для Arduino IDE

Прошейте платформу Arduino скетчем приведённым ниже.

После загрузки скетча, в Serial-порт будут выводиться текущие показания сенсора в 10-битном диапазоне.

Патч для XOD

После загрузки прошивки, в отладочной ноде watch будут выводиться текущие показания сенсора в диапазоне от 0 до 0,75:

Пример для Espruino

В качестве мозга для считывания показаний с датчика рассмотрим платформы из серии Espruino, например Iskra JS.

Схема устройства

Подключите датчик влажности почвы к аналоговому пину A0 платформы Iskra JS. Для коммуникации понадобятся соединительные провода «мама-папа».

Для быстрой сборки и отладки устройства возьмите плату расширения Troyka Shield, которая одевается сверху на Iskra JS методом бутерброда. Для коммуникации используйте трёхпроводной шлейф «мама-мама», который идёт в комплекте с датчиком.

Исходный код

Прошейте платформу Iskra JS скриптом приведённым ниже.

После загрузки скрипта, в консоль будут выводиться текущие показания сенсора в диапазоне от 0 до 75%.

Пример для Raspberry Pi

В качестве мозга для считывания показаний с датчика рассмотрим одноплатные компьютеры Raspberry Pi, например Raspberry Pi 4.

Схема устройства

К сожалению в компьютере Raspberry Pi нет встроеенного аналого-цифрового преобразователя. Используйте плату расширения Troyka Cap, которое добавит малине аналоговые пины.

Подключите датчик влажности почвы к Raspberry Pi через плату расширения Troyka Cap к 3 пину. Для коммуникации используйте трёхпроводной шлейф «мама-мама», который идёт в комплекте с датчиком.

Программная настройка

Исходный код

Запустите скрипт на малине приведённым ниже.

После загрузки скрипта, в консоль малины будут выводиться текущие показания сенсора в диапазоне от 0 до 75%.

Элементы платы

Измерительные электроды

Датчик построен на основе транзисторного усилителя тока. Для измерения влажности почвы на датчике расположены два электрода, которые для проведения измерений необходимо воткнуть в почву. Электроды подключены в цепь между коллектором (точка SP) и базой (точка SN) встроенного транзистора на плате MMBT2222ALT1G.

При изменении влажности почвы, меняется сопротивление между базой и коллектором, к которому подключен положительный полюс источника питания. Соответственно меняется и протекающий ток от коллектора через эмиттер на землю. В результате изменяется и выходное аналоговое напряжение сенсора (точка OUT). Подробности найдёте на принципиальной схеме датчика.

Troyka-контакты

Датчик подключается к управляющей электронике через три провода.

Сигнальный (S) — выходной сигнал сенсора. Напряжение на выходе датчика прямо пропорционально уровню измеренной электропроводности: чем выше влажность почвы, тем выше уровень сигнала на выходе датчика и соответственно наоборот. Максимальное выходное значения 75% от напряжения питания. Подключите к аналоговому пину микроконтроллера.

Ссылка на основную публикацию